New paper in Acta Biomateriala
Soraya and colleagues have recently published in Acta Biomateriala their studies demonstrating the value of cell microarray platforms to decipher the combinatorial interactions at play in stem cell niche microenvironments.
Cell microarrays are a novel platform for the high throughput discovery of new biomaterials. By re-creating a multitude of cell microenvironments on a single slide, this approach can identify the optimal surface composition to drive a desired cell response. To systematically study the effects of molecular microenvironments on stem cell fate, we designed a cell microarray based on parallel exposure of mesenchymal stem cells (MSCs) to surface-immobilised collagen I (Coll I) and bone morphogenetic protein 2 (BMP 2). This was achieved by means of a reactive coating on a slide surface, enabling the covalent anchoring of Coll I and BMP 2 as microscale spots printed by a robotic contact printer. The surface between the printed protein spots was passivated using poly (ethylene glycol) bisamine 10,000 Da (A-PEG). MSCs were then captured and cultured on array spots composed of binary mixtures of Coll I and BMP 2, followed by automated image acquisition and quantitative, multi-parameter analysis of cellular responses. Surface compositions that gave the highest osteogenic differentiation were determined using Runx 2 expression and calcium deposition. Quantitative single cell analysis revealed subtle concentration-dependent effects of surface-immobilised proteins on the extent of osteogenic differentiation obscured using conventional analysis. In particular, the synergistic interaction of Coll I and BMP 2 in supporting osteogenic differentiation was confirmed.
You can find out more in: Acta Biomateriala, doi:10.1016/j.actbio.2015.07.02